/** * @license Fraction.js v2.4.1 01/06/2015 * http://www.xarg.org/2014/03/rational-numbers-in-javascript/ * * Copyright (c) 2015, Robert Eisele (robert@xarg.org) * Dual licensed under the MIT or GPL Version 2 licenses. **/ var Fraction = require('../fraction.min.js'); /* We have the polynom f(x) = 1/3x_1^2 + x_2^2 + x_1 * x_2 + 3 The gradient of f(x): grad(x) = | x_1^2+x_2 | | 2x_2+x_1 | And thus the Hesse-Matrix H: | 2x_1 1 | | 1 2 | The inverse Hesse-Matrix H^-1 is | -2 / (1-4x_1) 1 / (1 - 4x_1) | | 1 / (1 - 4x_1) -2x_1 / (1 - 4x_1) | We now want to find lim ->oo x[n], with the starting element of (3 2)^T */ // Get the Hesse Matrix function H(x) { var z = new Fraction(1).sub(new Fraction(4).mul(x[0])); return [ new Fraction(-2).div(z), new Fraction(1).div(z), new Fraction(1).div(z), new Fraction(-2).mul(x[0]).div(z), ]; } // Get the gradient of f(x) function grad(x) { return [ new Fraction(x[0]).mul(x[0]).add(x[1]), new Fraction(2).mul(x[1]).add(x[0]) ]; } // A simple matrix multiplication helper function matrMult(m, v) { return [ new Fraction(m[0]).mul(v[0]).add(new Fraction(m[1]).mul(v[1])), new Fraction(m[2]).mul(v[0]).add(new Fraction(m[3]).mul(v[1])) ]; } // A simple vector subtraction helper function vecSub(a, b) { return [ new Fraction(a[0]).sub(b[0]), new Fraction(a[1]).sub(b[1]) ]; } // Main function, gets a vector and the actual index function run(V, j) { var t = H(V); //console.log("H(X)"); for (var i in t) { // console.log(t[i].toFraction()); } var s = grad(V); //console.log("vf(X)"); for (var i in s) { // console.log(s[i].toFraction()); } //console.log("multiplikation"); var r = matrMult(t, s); for (var i in r) { // console.log(r[i].toFraction()); } var R = (vecSub(V, r)); console.log("X"+j); console.log(R[0].toFraction(), "= "+R[0].valueOf()); console.log(R[1].toFraction(), "= "+R[1].valueOf()); console.log("\n"); return R; } // Set the starting vector var v = [3, 2]; for (var i = 0; i < 15; i++) { v = run(v, i); }