// Type definitions for bignumber.js >=6.0.0 // Project: https://github.com/MikeMcl/bignumber.js // Definitions by: Michael Mclaughlin // Definitions: https://github.com/MikeMcl/bignumber.js // Documentation: http://mikemcl.github.io/bignumber.js/ // // Exports: // // class BigNumber (default export) // type BigNumber.Constructor // type BigNumber.Instance // type BigNumber.ModuloMode // type BigNumber.RoundingMOde // type BigNumber.Value // interface BigNumber.Config // interface BigNumber.Format // // Example (alternative syntax commented-out): // // import {BigNumber} from "bignumber.js" // //import BigNumber from "bignumber.js" // // let rm: BigNumber.RoundingMode = BigNumber.ROUND_UP; // let f: BigNumber.Format = { decimalSeparator: ',' }; // let c: BigNumber.Config = { DECIMAL_PLACES: 4, ROUNDING_MODE: rm, FORMAT: f }; // BigNumber.config(c); // // let v: BigNumber.Value = '12345.6789'; // let b: BigNumber = new BigNumber(v); // //let b: BigNumber.Instance = new BigNumber(v); // // The use of compiler option `--strictNullChecks` is recommended. export default BigNumber; export namespace BigNumber { /** * See `BigNumber.config` and `BigNumber.clone`. */ export interface Config { /** * An integer, 0 to 1e+9. Default value: 20. * * The maximum number of decimal places of the result of operations involving division, i.e. * division, square root and base conversion operations, and exponentiation when the exponent is * negative. * * ```ts * BigNumber.config({ DECIMAL_PLACES: 5 }) * BigNumber.set({ DECIMAL_PLACES: 5 }) * ``` */ DECIMAL_PLACES?: number; /** * An integer, 0 to 8. Default value: `BigNumber.ROUND_HALF_UP` (4). * * The rounding mode used in operations that involve division (see `DECIMAL_PLACES`) and the * default rounding mode of the `decimalPlaces`, `precision`, `toExponential`, `toFixed`, * `toFormat` and `toPrecision` methods. * * The modes are available as enumerated properties of the BigNumber constructor. * * ```ts * BigNumber.config({ ROUNDING_MODE: 0 }) * BigNumber.set({ ROUNDING_MODE: BigNumber.ROUND_UP }) * ``` */ ROUNDING_MODE?: BigNumber.RoundingMode; /** * An integer, 0 to 1e+9, or an array, [-1e+9 to 0, 0 to 1e+9]. * Default value: `[-7, 20]`. * * The exponent value(s) at which `toString` returns exponential notation. * * If a single number is assigned, the value is the exponent magnitude. * * If an array of two numbers is assigned then the first number is the negative exponent value at * and beneath which exponential notation is used, and the second number is the positive exponent * value at and above which exponential notation is used. * * For example, to emulate JavaScript numbers in terms of the exponent values at which they begin * to use exponential notation, use `[-7, 20]`. * * ```ts * BigNumber.config({ EXPONENTIAL_AT: 2 }) * new BigNumber(12.3) // '12.3' e is only 1 * new BigNumber(123) // '1.23e+2' * new BigNumber(0.123) // '0.123' e is only -1 * new BigNumber(0.0123) // '1.23e-2' * * BigNumber.config({ EXPONENTIAL_AT: [-7, 20] }) * new BigNumber(123456789) // '123456789' e is only 8 * new BigNumber(0.000000123) // '1.23e-7' * * // Almost never return exponential notation: * BigNumber.config({ EXPONENTIAL_AT: 1e+9 }) * * // Always return exponential notation: * BigNumber.config({ EXPONENTIAL_AT: 0 }) * ``` * * Regardless of the value of `EXPONENTIAL_AT`, the `toFixed` method will always return a value in * normal notation and the `toExponential` method will always return a value in exponential form. * Calling `toString` with a base argument, e.g. `toString(10)`, will also always return normal * notation. */ EXPONENTIAL_AT?: number|[number, number]; /** * An integer, magnitude 1 to 1e+9, or an array, [-1e+9 to -1, 1 to 1e+9]. * Default value: `[-1e+9, 1e+9]`. * * The exponent value(s) beyond which overflow to Infinity and underflow to zero occurs. * * If a single number is assigned, it is the maximum exponent magnitude: values wth a positive * exponent of greater magnitude become Infinity and those with a negative exponent of greater * magnitude become zero. * * If an array of two numbers is assigned then the first number is the negative exponent limit and * the second number is the positive exponent limit. * * For example, to emulate JavaScript numbers in terms of the exponent values at which they * become zero and Infinity, use [-324, 308]. * * ```ts * BigNumber.config({ RANGE: 500 }) * BigNumber.config().RANGE // [ -500, 500 ] * new BigNumber('9.999e499') // '9.999e+499' * new BigNumber('1e500') // 'Infinity' * new BigNumber('1e-499') // '1e-499' * new BigNumber('1e-500') // '0' * * BigNumber.config({ RANGE: [-3, 4] }) * new BigNumber(99999) // '99999' e is only 4 * new BigNumber(100000) // 'Infinity' e is 5 * new BigNumber(0.001) // '0.01' e is only -3 * new BigNumber(0.0001) // '0' e is -4 * ``` * The largest possible magnitude of a finite BigNumber is 9.999...e+1000000000. * The smallest possible magnitude of a non-zero BigNumber is 1e-1000000000. */ RANGE?: number|[number, number]; /** * A boolean: `true` or `false`. Default value: `false`. * * The value that determines whether cryptographically-secure pseudo-random number generation is * used. If `CRYPTO` is set to true then the random method will generate random digits using * `crypto.getRandomValues` in browsers that support it, or `crypto.randomBytes` if using a * version of Node.js that supports it. * * If neither function is supported by the host environment then attempting to set `CRYPTO` to * `true` will fail and an exception will be thrown. * * If `CRYPTO` is `false` then the source of randomness used will be `Math.random` (which is * assumed to generate at least 30 bits of randomness). * * See `BigNumber.random`. * * ```ts * BigNumber.config({ CRYPTO: true }) * BigNumber.config().CRYPTO // true * BigNumber.random() // 0.54340758610486147524 * ``` */ CRYPTO?: boolean; /** * An integer, 0, 1, 3, 6 or 9. Default value: `BigNumber.ROUND_DOWN` (1). * * The modulo mode used when calculating the modulus: `a mod n`. * The quotient, `q = a / n`, is calculated according to the `ROUNDING_MODE` that corresponds to * the chosen `MODULO_MODE`. * The remainder, `r`, is calculated as: `r = a - n * q`. * * The modes that are most commonly used for the modulus/remainder operation are shown in the * following table. Although the other rounding modes can be used, they may not give useful * results. * * Property | Value | Description * :------------------|:------|:------------------------------------------------------------------ * `ROUND_UP` | 0 | The remainder is positive if the dividend is negative. * `ROUND_DOWN` | 1 | The remainder has the same sign as the dividend. * | | Uses 'truncating division' and matches JavaScript's `%` operator . * `ROUND_FLOOR` | 3 | The remainder has the same sign as the divisor. * | | This matches Python's `%` operator. * `ROUND_HALF_EVEN` | 6 | The IEEE 754 remainder function. * `EUCLID` | 9 | The remainder is always positive. * | | Euclidian division: `q = sign(n) * floor(a / abs(n))` * * The rounding/modulo modes are available as enumerated properties of the BigNumber constructor. * * See `modulo`. * * ```ts * BigNumber.config({ MODULO_MODE: BigNumber.EUCLID }) * BigNumber.set({ MODULO_MODE: 9 }) // equivalent * ``` */ MODULO_MODE?: BigNumber.ModuloMode; /** * An integer, 0 to 1e+9. Default value: 0. * * The maximum precision, i.e. number of significant digits, of the result of the power operation * - unless a modulus is specified. * * If set to 0, the number of significant digits will not be limited. * * See `exponentiatedBy`. * * ```ts * BigNumber.config({ POW_PRECISION: 100 }) * ``` */ POW_PRECISION?: number; /** * An object including any number of the properties shown below. * * The object configures the format of the string returned by the `toFormat` method. * The example below shows the properties of the object that are recognised, and * their default values. * * Unlike the other configuration properties, the values of the properties of the `FORMAT` object * will not be checked for validity - the existing object will simply be replaced by the object * that is passed in. * * See `toFormat`. * * ```ts * BigNumber.config({ * FORMAT: { * // the decimal separator * decimalSeparator: '.', * // the grouping separator of the integer part * groupSeparator: ',', * // the primary grouping size of the integer part * groupSize: 3, * // the secondary grouping size of the integer part * secondaryGroupSize: 0, * // the grouping separator of the fraction part * fractionGroupSeparator: ' ', * // the grouping size of the fraction part * fractionGroupSize: 0 * } * }) * ``` */ FORMAT?: BigNumber.Format; /** * A string representing the alphabet used for base conversion. * Default value: `'0123456789abcdefghijklmnopqrstuvwxyz'`. * * The length of the alphabet corresponds to the maximum value of the base argument that can be * passed to the BigNumber constructor or `toString`. There is no maximum length, but it must be * at least 2 characters long, and it must not contain a repeated character, or `'.'` - the * decimal separator for all values whatever their base. * * ```ts * // duodecimal (base 12) * BigNumber.config({ ALPHABET: '0123456789TE' }) * x = new BigNumber('T', 12) * x.toString() // '10' * x.toString(12) // 'T' * ``` */ ALPHABET?: string; } export type Constructor = typeof BigNumber; /** * See `FORMAT` and `toFormat`. */ export interface Format { /** * The decimal separator. */ decimalSeparator?: string; /** * The grouping separator of the integer part. */ groupSeparator?: string; /** * The primary grouping size of the integer part. */ groupSize?: number; /** * The secondary grouping size of the integer part. */ secondaryGroupSize?: number; /** * The grouping separator of the fraction part. */ fractionGroupSeparator?: string; /** * The grouping size of the fraction part. */ fractionGroupSize?: number; } export type Instance = BigNumber; export type ModuloMode = 0 | 1 | 3 | 6 | 9; export type RoundingMode = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8; export type Value = string | number | BigNumber; } export declare class BigNumber { /** * Used internally by the `BigNumber.isBigNumber` method. */ private readonly _isBigNumber: true; /** * The coefficient of the value of this BigNumber, an array of base 1e14 integer numbers. */ readonly c: number[]; /** * The exponent of the value of this BigNumber, an integer number, -1000000000 to 1000000000. */ readonly e: number; /** * The sign of the value of this BigNumber, -1 or 1. */ readonly s: number; /** * Returns a new instance of a BigNumber object with value `n`, where `n` is a numeric value in * the specified `base`, or base 10 if `base` is omitted or is `null` or `undefined`. * * ```ts * x = new BigNumber(123.4567) // '123.4567' * // 'new' is optional * y = BigNumber(x) // '123.4567' * ``` * * If `n` is a base 10 value it can be in normal (fixed-point) or exponential notation. * Values in other bases must be in normal notation. Values in any base can have fraction digits, * i.e. digits after the decimal point. * * ```ts * new BigNumber(43210) // '43210' * new BigNumber('4.321e+4') // '43210' * new BigNumber('-735.0918e-430') // '-7.350918e-428' * new BigNumber('123412421.234324', 5) // '607236.557696' * ``` * * Signed `0`, signed `Infinity` and `NaN` are supported. * * ```ts * new BigNumber('-Infinity') // '-Infinity' * new BigNumber(NaN) // 'NaN' * new BigNumber(-0) // '0' * new BigNumber('.5') // '0.5' * new BigNumber('+2') // '2' * ``` * * String values in hexadecimal literal form, e.g. `'0xff'`, are valid, as are string values with * the octal and binary prefixs `'0o'` and `'0b'`. String values in octal literal form without the * prefix will be interpreted as decimals, e.g. `'011'` is interpreted as 11, not 9. * * ```ts * new BigNumber(-10110100.1, 2) // '-180.5' * new BigNumber('-0b10110100.1') // '-180.5' * new BigNumber('ff.8', 16) // '255.5' * new BigNumber('0xff.8') // '255.5' * ``` * * If a base is specified, `n` is rounded according to the current `DECIMAL_PLACES` and * `ROUNDING_MODE` settings. This includes base 10, so don't include a `base` parameter for decimal * values unless this behaviour is desired. * * ```ts * BigNumber.config({ DECIMAL_PLACES: 5 }) * new BigNumber(1.23456789) // '1.23456789' * new BigNumber(1.23456789, 10) // '1.23457' * ``` * * An error is thrown if `base` is invalid. * * There is no limit to the number of digits of a value of type string (other than that of * JavaScript's maximum array size). See `RANGE` to set the maximum and minimum possible exponent * value of a BigNumber. * * ```ts * new BigNumber('5032485723458348569331745.33434346346912144534543') * new BigNumber('4.321e10000000') * ``` * * BigNumber `NaN` is returned if `n` is invalid (unless `BigNumber.DEBUG` is `true`, see below). * * ```ts * new BigNumber('.1*') // 'NaN' * new BigNumber('blurgh') // 'NaN' * new BigNumber(9, 2) // 'NaN' * ``` * * To aid in debugging, if `BigNumber.DEBUG` is `true` then an error will be thrown on an * invalid `n`. An error will also be thrown if `n` is of type number with more than 15 * significant digits, as calling `toString` or `valueOf` on these numbers may not result in the * intended value. * * ```ts * console.log(823456789123456.3) // 823456789123456.2 * new BigNumber(823456789123456.3) // '823456789123456.2' * BigNumber.DEBUG = true * // 'Error: Number has more than 15 significant digits' * new BigNumber(823456789123456.3) * // 'Error: Not a base 2 number' * new BigNumber(9, 2) * ``` * * @param n A numeric value. * @param base The base of `n`, integer, 2 to 36 (or `ALPHABET.length`, see `ALPHABET`). */ constructor(n: BigNumber.Value, base?: number); /** * Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this * BigNumber. * * The return value is always exact and unrounded. * * ```ts * x = new BigNumber(-0.8) * x.absoluteValue() // '0.8' * ``` */ absoluteValue(): BigNumber; /** * Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this * BigNumber. * * The return value is always exact and unrounded. * * ```ts * x = new BigNumber(-0.8) * x.abs() // '0.8' * ``` */ abs(): BigNumber; /** * Returns | | * :-------:|:--------------------------------------------------------------| * 1 | If the value of this BigNumber is greater than the value of `n` * -1 | If the value of this BigNumber is less than the value of `n` * 0 | If this BigNumber and `n` have the same value * `null` | If the value of either this BigNumber or `n` is `NaN` * * ```ts * * x = new BigNumber(Infinity) * y = new BigNumber(5) * x.comparedTo(y) // 1 * x.comparedTo(x.minus(1)) // 0 * y.comparedTo(NaN) // null * y.comparedTo('110', 2) // -1 * ``` * @param n A numeric value. * @param [base] The base of n. */ comparedTo(n: BigNumber.Value, base?: number): number; /** * Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode * `roundingMode` to a maximum of `decimalPlaces` decimal places. * * If `decimalPlaces` is omitted, or is `null` or `undefined`, the return value is the number of * decimal places of the value of this BigNumber, or `null` if the value of this BigNumber is * ±`Infinity` or `NaN`. * * If `roundingMode` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used. * * Throws if `decimalPlaces` or `roundingMode` is invalid. * * ```ts * x = new BigNumber(1234.56) * x.decimalPlaces() // 2 * x.decimalPlaces(1) // '1234.6' * x.decimalPlaces(2) // '1234.56' * x.decimalPlaces(10) // '1234.56' * x.decimalPlaces(0, 1) // '1234' * x.decimalPlaces(0, 6) // '1235' * x.decimalPlaces(1, 1) // '1234.5' * x.decimalPlaces(1, BigNumber.ROUND_HALF_EVEN) // '1234.6' * x // '1234.56' * y = new BigNumber('9.9e-101') * y.decimalPlaces() // 102 * ``` * * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9. * @param [roundingMode] Rounding mode, integer, 0 to 8. */ decimalPlaces(): number; decimalPlaces(decimalPlaces: number, roundingMode?: BigNumber.RoundingMode): BigNumber; /** * Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode * `roundingMode` to a maximum of `decimalPlaces` decimal places. * * If `decimalPlaces` is omitted, or is `null` or `undefined`, the return value is the number of * decimal places of the value of this BigNumber, or `null` if the value of this BigNumber is * ±`Infinity` or `NaN`. * * If `roundingMode` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used. * * Throws if `decimalPlaces` or `roundingMode` is invalid. * * ```ts * x = new BigNumber(1234.56) * x.dp() // 2 * x.dp(1) // '1234.6' * x.dp(2) // '1234.56' * x.dp(10) // '1234.56' * x.dp(0, 1) // '1234' * x.dp(0, 6) // '1235' * x.dp(1, 1) // '1234.5' * x.dp(1, BigNumber.ROUND_HALF_EVEN) // '1234.6' * x // '1234.56' * y = new BigNumber('9.9e-101') * y.dp() // 102 * ``` * * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9. * @param [roundingMode] Rounding mode, integer, 0 to 8. */ dp(): number; dp(decimalPlaces: number, roundingMode?: BigNumber.RoundingMode): BigNumber; /** * Returns a BigNumber whose value is the value of this BigNumber divided by `n`, rounded * according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings. * * ```ts * x = new BigNumber(355) * y = new BigNumber(113) * x.dividedBy(y) // '3.14159292035398230088' * x.dividedBy(5) // '71' * x.dividedBy(47, 16) // '5' * ``` * * @param n A numeric value. * @param [base] The base of n. */ dividedBy(n: BigNumber.Value, base?: number): BigNumber; /** * Returns a BigNumber whose value is the value of this BigNumber divided by `n`, rounded * according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings. * * ```ts * x = new BigNumber(355) * y = new BigNumber(113) * x.div(y) // '3.14159292035398230088' * x.div(5) // '71' * x.div(47, 16) // '5' * ``` * * @param n A numeric value. * @param [base] The base of n. */ div(n: BigNumber.Value, base?: number): BigNumber; /** * Returns a BigNumber whose value is the integer part of dividing the value of this BigNumber by * `n`. * * ```ts * x = new BigNumber(5) * y = new BigNumber(3) * x.dividedToIntegerBy(y) // '1' * x.dividedToIntegerBy(0.7) // '7' * x.dividedToIntegerBy('0.f', 16) // '5' * ``` * * @param n A numeric value. * @param [base] The base of n. */ dividedToIntegerBy(n: BigNumber.Value, base?: number): BigNumber; /** * Returns a BigNumber whose value is the integer part of dividing the value of this BigNumber by * `n`. * * ```ts * x = new BigNumber(5) * y = new BigNumber(3) * x.idiv(y) // '1' * x.idiv(0.7) // '7' * x.idiv('0.f', 16) // '5' * ``` * * @param n A numeric value. * @param [base] The base of n. */ idiv(n: BigNumber.Value, base?: number): BigNumber; /** * Returns a BigNumber whose value is the value of this BigNumber exponentiated by `n`, i.e. * raised to the power `n`, and optionally modulo a modulus `m`. * * If `n` is negative the result is rounded according to the current `DECIMAL_PLACES` and * `ROUNDING_MODE` settings. * * As the number of digits of the result of the power operation can grow so large so quickly, * e.g. 123.456**10000 has over 50000 digits, the number of significant digits calculated is * limited to the value of the `POW_PRECISION` setting (unless a modulus `m` is specified). * * By default `POW_PRECISION` is set to 0. This means that an unlimited number of significant * digits will be calculated, and that the method's performance will decrease dramatically for * larger exponents. * * If `m` is specified and the value of `m`, `n` and this BigNumber are integers and `n` is * positive, then a fast modular exponentiation algorithm is used, otherwise the operation will * be performed as `x.exponentiatedBy(n).modulo(m)` with a `POW_PRECISION` of 0. * * Throws if `n` is not an integer. * * ```ts * Math.pow(0.7, 2) // 0.48999999999999994 * x = new BigNumber(0.7) * x.exponentiatedBy(2) // '0.49' * BigNumber(3).exponentiatedBy(-2) // '0.11111111111111111111' * ``` * * @param n The exponent, an integer. * @param [m] The modulus. */ exponentiatedBy(n: number, m?: BigNumber.Value): BigNumber; /** * Returns a BigNumber whose value is the value of this BigNumber exponentiated by `n`, i.e. * raised to the power `n`, and optionally modulo a modulus `m`. * * If `n` is negative the result is rounded according to the current `DECIMAL_PLACES` and * `ROUNDING_MODE` settings. * * As the number of digits of the result of the power operation can grow so large so quickly, * e.g. 123.456**10000 has over 50000 digits, the number of significant digits calculated is * limited to the value of the `POW_PRECISION` setting (unless a modulus `m` is specified). * * By default `POW_PRECISION` is set to 0. This means that an unlimited number of significant * digits will be calculated, and that the method's performance will decrease dramatically for * larger exponents. * * If `m` is specified and the value of `m`, `n` and this BigNumber are integers and `n` is * positive, then a fast modular exponentiation algorithm is used, otherwise the operation will * be performed as `x.pow(n).modulo(m)` with a `POW_PRECISION` of 0. * * Throws if `n` is not an integer. * * ```ts * Math.pow(0.7, 2) // 0.48999999999999994 * x = new BigNumber(0.7) * x.pow(2) // '0.49' * BigNumber(3).pow(-2) // '0.11111111111111111111' * ``` * * @param n The exponent, an integer. * @param [m] The modulus. */ pow(n: number, m?: BigNumber.Value): BigNumber; /** * Returns a BigNumber whose value is the value of this BigNumber rounded to an integer using * rounding mode `rm`. * * If `rm` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used. * * Throws if `rm` is invalid. * * ```ts * x = new BigNumber(123.456) * x.integerValue() // '123' * x.integerValue(BigNumber.ROUND_CEIL) // '124' * y = new BigNumber(-12.7) * y.integerValue() // '-13' * x.integerValue(BigNumber.ROUND_DOWN) // '-12' * ``` * * @param {BigNumber.RoundingMode} [rm] The roundng mode, an integer, 0 to 8. */ integerValue(rm?: BigNumber.RoundingMode): BigNumber; /** * Returns `true` if the value of this BigNumber is equal to the value of `n`, otherwise returns * `false`. * * As with JavaScript, `NaN` does not equal `NaN`. * * ```ts * 0 === 1e-324 // true * x = new BigNumber(0) * x.isEqualTo('1e-324') // false * BigNumber(-0).isEqualTo(x) // true ( -0 === 0 ) * BigNumber(255).isEqualTo('ff', 16) // true * * y = new BigNumber(NaN) * y.isEqualTo(NaN) // false * ``` * * @param n A numeric value. * @param [base] The base of n. */ isEqualTo(n: BigNumber.Value, base?: number): boolean; /** * Returns `true` if the value of this BigNumber is equal to the value of `n`, otherwise returns * `false`. * * As with JavaScript, `NaN` does not equal `NaN`. * * ```ts * 0 === 1e-324 // true * x = new BigNumber(0) * x.eq('1e-324') // false * BigNumber(-0).eq(x) // true ( -0 === 0 ) * BigNumber(255).eq('ff', 16) // true * * y = new BigNumber(NaN) * y.eq(NaN) // false * ``` * * @param n A numeric value. * @param [base] The base of n. */ eq(n: BigNumber.Value, base?: number): boolean; /** * Returns `true` if the value of this BigNumber is a finite number, otherwise returns `false`. * * The only possible non-finite values of a BigNumber are `NaN`, `Infinity` and `-Infinity`. * * ```ts * x = new BigNumber(1) * x.isFinite() // true * y = new BigNumber(Infinity) * y.isFinite() // false * ``` */ isFinite(): boolean; /** * Returns `true` if the value of this BigNumber is greater than the value of `n`, otherwise * returns `false`. * * ```ts * 0.1 > (0.3 - 0.2) // true * x = new BigNumber(0.1) * x.isGreaterThan(BigNumber(0.3).minus(0.2)) // false * BigNumber(0).isGreaterThan(x) // false * BigNumber(11, 3).isGreaterThan(11.1, 2) // true * ``` * * @param n A numeric value. * @param [base] The base of n. */ isGreaterThan(n: BigNumber.Value, base?: number): boolean; /** * Returns `true` if the value of this BigNumber is greater than the value of `n`, otherwise * returns `false`. * * ```ts * 0.1 > (0.3 - 0 // true * x = new BigNumber(0.1) * x.gt(BigNumber(0.3).minus(0.2)) // false * BigNumber(0).gt(x) // false * BigNumber(11, 3).gt(11.1, 2) // true * ``` * * @param n A numeric value. * @param [base] The base of n. */ gt(n: BigNumber.Value, base?: number): boolean; /** * Returns `true` if the value of this BigNumber is greater than or equal to the value of `n`, * otherwise returns `false`. * * ```ts * (0.3 - 0.2) >= 0.1 // false * x = new BigNumber(0.3).minus(0.2) * x.isGreaterThanOrEqualTo(0.1) // true * BigNumber(1).isGreaterThanOrEqualTo(x) // true * BigNumber(10, 18).isGreaterThanOrEqualTo('i', 36) // true * ``` * * @param n A numeric value. * @param [base] The base of n. */ isGreaterThanOrEqualTo(n: BigNumber.Value, base?: number): boolean; /** * Returns `true` if the value of this BigNumber is greater than or equal to the value of `n`, * otherwise returns `false`. * * ```ts * (0.3 - 0.2) >= 0.1 // false * x = new BigNumber(0.3).minus(0.2) * x.gte(0.1) // true * BigNumber(1).gte(x) // true * BigNumber(10, 18).gte('i', 36) // true * ``` * * @param n A numeric value. * @param [base] The base of n. */ gte(n: BigNumber.Value, base?: number): boolean; /** * Returns `true` if the value of this BigNumber is an integer, otherwise returns `false`. * * ```ts * x = new BigNumber(1) * x.isInteger() // true * y = new BigNumber(123.456) * y.isInteger() // false * ``` */ isInteger(): boolean; /** * Returns `true` if the value of this BigNumber is less than the value of `n`, otherwise returns * `false`. * * ```ts * (0.3 - 0.2) < 0.1 // true * x = new BigNumber(0.3).minus(0.2) * x.isLessThan(0.1) // false * BigNumber(0).isLessThan(x) // true * BigNumber(11.1, 2).isLessThan(11, 3) // true * ``` * * @param n A numeric value. * @param [base] The base of n. */ isLessThan(n: BigNumber.Value, base?: number): boolean; /** * Returns `true` if the value of this BigNumber is less than the value of `n`, otherwise returns * `false`. * * ```ts * (0.3 - 0.2) < 0.1 // true * x = new BigNumber(0.3).minus(0.2) * x.lt(0.1) // false * BigNumber(0).lt(x) // true * BigNumber(11.1, 2).lt(11, 3) // true * ``` * * @param n A numeric value. * @param [base] The base of n. */ lt(n: BigNumber.Value, base?: number): boolean; /** * Returns `true` if the value of this BigNumber is less than or equal to the value of `n`, * otherwise returns `false`. * * ```ts * 0.1 <= (0.3 - 0.2) // false * x = new BigNumber(0.1) * x.isLessThanOrEqualTo(BigNumber(0.3).minus(0.2)) // true * BigNumber(-1).isLessThanOrEqualTo(x) // true * BigNumber(10, 18).isLessThanOrEqualTo('i', 36) // true * ``` * * @param n A numeric value. * @param [base] The base of n. */ isLessThanOrEqualTo(n: BigNumber.Value, base?: number): boolean; /** * Returns `true` if the value of this BigNumber is less than or equal to the value of `n`, * otherwise returns `false`. * * ```ts * 0.1 <= (0.3 - 0.2) // false * x = new BigNumber(0.1) * x.lte(BigNumber(0.3).minus(0.2)) // true * BigNumber(-1).lte(x) // true * BigNumber(10, 18).lte('i', 36) // true * ``` * * @param n A numeric value. * @param [base] The base of n. */ lte(n: BigNumber.Value, base?: number): boolean; /** * Returns `true` if the value of this BigNumber is `NaN`, otherwise returns `false`. * * ```ts * x = new BigNumber(NaN) * x.isNaN() // true * y = new BigNumber('Infinity') * y.isNaN() // false * ``` */ isNaN(): boolean; /** * Returns `true` if the value of this BigNumber is negative, otherwise returns `false`. * * ```ts * x = new BigNumber(-0) * x.isNegative() // true * y = new BigNumber(2) * y.isNegative() // false * ``` */ isNegative(): boolean; /** * Returns `true` if the value of this BigNumber is positive, otherwise returns `false`. * * ```ts * x = new BigNumber(-0) * x.isPositive() // false * y = new BigNumber(2) * y.isPositive() // true * ``` */ isPositive(): boolean; /** * Returns `true` if the value of this BigNumber is zero or minus zero, otherwise returns `false`. * * ```ts * x = new BigNumber(-0) * x.isZero() // true * ``` */ isZero(): boolean; /** * Returns a BigNumber whose value is the value of this BigNumber minus `n`. * * The return value is always exact and unrounded. * * ```ts * 0.3 - 0.1 // 0.19999999999999998 * x = new BigNumber(0.3) * x.minus(0.1) // '0.2' * x.minus(0.6, 20) // '0' * ``` * * @param n A numeric value. * @param [base] The base of n. */ minus(n: BigNumber.Value, base?: number): BigNumber; /** * Returns a BigNumber whose value is the value of this BigNumber modulo `n`, i.e. the integer * remainder of dividing this BigNumber by `n`. * * The value returned, and in particular its sign, is dependent on the value of the `MODULO_MODE` * setting of this BigNumber constructor. If it is 1 (default value), the result will have the * same sign as this BigNumber, and it will match that of Javascript's `%` operator (within the * limits of double precision) and BigDecimal's `remainder` method. * * The return value is always exact and unrounded. * * See `MODULO_MODE` for a description of the other modulo modes. * * ```ts * 1 % 0.9 // 0.09999999999999998 * x = new BigNumber(1) * x.modulo(0.9) // '0.1' * y = new BigNumber(33) * y.modulo('a', 33) // '3' * ``` * * @param n A numeric value. * @param [base] The base of n. */ modulo(n: BigNumber.Value, base?: number): BigNumber; /** * Returns a BigNumber whose value is the value of this BigNumber modulo `n`, i.e. the integer * remainder of dividing this BigNumber by `n`. * * The value returned, and in particular its sign, is dependent on the value of the `MODULO_MODE` * setting of this BigNumber constructor. If it is 1 (default value), the result will have the * same sign as this BigNumber, and it will match that of Javascript's `%` operator (within the * limits of double precision) and BigDecimal's `remainder` method. * * The return value is always exact and unrounded. * * See `MODULO_MODE` for a description of the other modulo modes. * * ```ts * 1 % 0.9 // 0.09999999999999998 * x = new BigNumber(1) * x.mod(0.9) // '0.1' * y = new BigNumber(33) * y.mod('a', 33) // '3' * ``` * * @param n A numeric value. * @param [base] The base of n. */ mod(n: BigNumber.Value, base?: number): BigNumber; /** * Returns a BigNumber whose value is the value of this BigNumber multiplied by `n`. * * The return value is always exact and unrounded. * * ```ts * 0.6 * 3 // 1.7999999999999998 * x = new BigNumber(0.6) * y = x.multipliedBy(3) // '1.8' * BigNumber('7e+500').multipliedBy(y) // '1.26e+501' * x.multipliedBy('-a', 16) // '-6' * ``` * * @param n A numeric value. * @param [base] The base of n. */ multipliedBy(n: BigNumber.Value, base?: number) : BigNumber; /** * Returns a BigNumber whose value is the value of this BigNumber multiplied by `n`. * * The return value is always exact and unrounded. * * ```ts * 0.6 * 3 // 1.7999999999999998 * x = new BigNumber(0.6) * y = x.times(3) // '1.8' * BigNumber('7e+500').times(y) // '1.26e+501' * x.times('-a', 16) // '-6' * ``` * * @param n A numeric value. * @param [base] The base of n. */ times(n: BigNumber.Value, base?: number): BigNumber; /** * Returns a BigNumber whose value is the value of this BigNumber negated, i.e. multiplied by -1. * * ```ts * x = new BigNumber(1.8) * x.negated() // '-1.8' * y = new BigNumber(-1.3) * y.negated() // '1.3' * ``` */ negated(): BigNumber; /** * Returns a BigNumber whose value is the value of this BigNumber plus `n`. * * The return value is always exact and unrounded. * * ```ts * 0.1 + 0.2 // 0.30000000000000004 * x = new BigNumber(0.1) * y = x.plus(0.2) // '0.3' * BigNumber(0.7).plus(x).plus(y) // '1' * x.plus('0.1', 8) // '0.225' * ``` * * @param n A numeric value. * @param [base] The base of n. */ plus(n: BigNumber.Value, base?: number): BigNumber; /** * Returns the number of significant digits of the value of this BigNumber, or `null` if the value * of this BigNumber is ±`Infinity` or `NaN`. * * If `includeZeros` is true then any trailing zeros of the integer part of the value of this * BigNumber are counted as significant digits, otherwise they are not. * * Throws if `includeZeros` is invalid. * * ```ts * x = new BigNumber(9876.54321) * x.precision() // 9 * y = new BigNumber(987000) * y.precision(false) // 3 * y.precision(true) // 6 * ``` * * @param [includeZeros] Whether to include integer trailing zeros in the significant digit count. */ precision(includeZeros?: boolean): number; /** * Returns a BigNumber whose value is the value of this BigNumber rounded to a precision of * `significantDigits` significant digits using rounding mode `roundingMode`. * * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` will be used. * * Throws if `significantDigits` or `roundingMode` is invalid. * * ```ts * x = new BigNumber(9876.54321) * x.precision(6) // '9876.54' * x.precision(6, BigNumber.ROUND_UP) // '9876.55' * x.precision(2) // '9900' * x.precision(2, 1) // '9800' * x // '9876.54321' * ``` * * @param significantDigits Significant digits, integer, 1 to 1e+9. * @param [roundingMode] Rounding mode, integer, 0 to 8. */ precision(significantDigits: number, roundingMode?: BigNumber.RoundingMode): BigNumber; /** * Returns the number of significant digits of the value of this BigNumber, * or `null` if the value of this BigNumber is ±`Infinity` or `NaN`. * * If `includeZeros` is true then any trailing zeros of the integer part of * the value of this BigNumber are counted as significant digits, otherwise * they are not. * * Throws if `includeZeros` is invalid. * * ```ts * x = new BigNumber(9876.54321) * x.sd() // 9 * y = new BigNumber(987000) * y.sd(false) // 3 * y.sd(true) // 6 * ``` * * @param [includeZeros] Whether to include integer trailing zeros in the significant digit count. */ sd(includeZeros?: boolean): number; /* * Returns a BigNumber whose value is the value of this BigNumber rounded to a precision of * `significantDigits` significant digits using rounding mode `roundingMode`. * * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` will be used. * * Throws if `significantDigits` or `roundingMode` is invalid. * * ```ts * x = new BigNumber(9876.54321) * x.sd(6) // '9876.54' * x.sd(6, BigNumber.ROUND_UP) // '9876.55' * x.sd(2) // '9900' * x.sd(2, 1) // '9800' * x // '9876.54321' * ``` * * @param significantDigits Significant digits, integer, 1 to 1e+9. * @param [roundingMode] Rounding mode, integer, 0 to 8. */ sd(significantDigits: number, roundingMode?: BigNumber.RoundingMode): BigNumber; /** * Returns a BigNumber whose value is the value of this BigNumber shifted by `n` places. * * The shift is of the decimal point, i.e. of powers of ten, and is to the left if `n` is negative * or to the right if `n` is positive. * * The return value is always exact and unrounded. * * Throws if `n` is invalid. * * ```ts * x = new BigNumber(1.23) * x.shiftedBy(3) // '1230' * x.shiftedBy(-3) // '0.00123' * ``` * * @param n The shift value, integer, -9007199254740991 to 9007199254740991. */ shiftedBy(n: number): BigNumber; /** * Returns a BigNumber whose value is the square root of the value of this BigNumber, rounded * according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings. * * The return value will be correctly rounded, i.e. rounded as if the result was first calculated * to an infinite number of correct digits before rounding. * * ```ts * x = new BigNumber(16) * x.squareRoot() // '4' * y = new BigNumber(3) * y.squareRoot() // '1.73205080756887729353' * ``` */ squareRoot(): BigNumber; /** * Returns a BigNumber whose value is the square root of the value of this BigNumber, rounded * according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings. * * The return value will be correctly rounded, i.e. rounded as if the result was first calculated * to an infinite number of correct digits before rounding. * * ```ts * x = new BigNumber(16) * x.sqrt() // '4' * y = new BigNumber(3) * y.sqrt() // '1.73205080756887729353' * ``` */ sqrt(): BigNumber; /** * Returns a string representing the value of this BigNumber in exponential notation rounded using * rounding mode `roundingMode` to `decimalPlaces` decimal places, i.e with one digit before the * decimal point and `decimalPlaces` digits after it. * * If the value of this BigNumber in exponential notation has fewer than `decimalPlaces` fraction * digits, the return value will be appended with zeros accordingly. * * If `decimalPlaces` is omitted, or is `null` or `undefined`, the number of digits after the * decimal point defaults to the minimum number of digits necessary to represent the value * exactly. * * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used. * * Throws if `decimalPlaces` or `roundingMode` is invalid. * * ```ts * x = 45.6 * y = new BigNumber(x) * x.toExponential() // '4.56e+1' * y.toExponential() // '4.56e+1' * x.toExponential(0) // '5e+1' * y.toExponential(0) // '5e+1' * x.toExponential(1) // '4.6e+1' * y.toExponential(1) // '4.6e+1' * y.toExponential(1, 1) // '4.5e+1' (ROUND_DOWN) * x.toExponential(3) // '4.560e+1' * y.toExponential(3) // '4.560e+1' * ``` * * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9. * @param [roundingMode] Rounding mode, integer, 0 to 8. */ toExponential(decimalPlaces?: number, roundingMode?: BigNumber.RoundingMode): string; /** * Returns a string representing the value of this BigNumber in normal (fixed-point) notation * rounded to `decimalPlaces` decimal places using rounding mode `roundingMode`. * * If the value of this BigNumber in normal notation has fewer than `decimalPlaces` fraction * digits, the return value will be appended with zeros accordingly. * * Unlike `Number.prototype.toFixed`, which returns exponential notation if a number is greater or * equal to 10**21, this method will always return normal notation. * * If `decimalPlaces` is omitted or is `null` or `undefined`, the return value will be unrounded * and in normal notation. This is also unlike `Number.prototype.toFixed`, which returns the value * to zero decimal places. It is useful when normal notation is required and the current * `EXPONENTIAL_AT` setting causes `toString` to return exponential notation. * * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used. * * Throws if `decimalPlaces` or `roundingMode` is invalid. * * ```ts * x = 3.456 * y = new BigNumber(x) * x.toFixed() // '3' * y.toFixed() // '3.456' * y.toFixed(0) // '3' * x.toFixed(2) // '3.46' * y.toFixed(2) // '3.46' * y.toFixed(2, 1) // '3.45' (ROUND_DOWN) * x.toFixed(5) // '3.45600' * y.toFixed(5) // '3.45600' * ``` * * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9. * @param [roundingMode] Rounding mode, integer, 0 to 8. */ toFixed(decimalPlaces?: number, roundingMode?: BigNumber.RoundingMode): string; /** * Returns a string representing the value of this BigNumber in normal (fixed-point) notation * rounded to `decimalPlaces` decimal places using rounding mode `roundingMode`, and formatted * according to the properties of the `FORMAT` object. * * The properties of the `FORMAT` object are shown in the examples below. * * If `decimalPlaces` is omitted or is `null` or `undefined`, then the return value is not * rounded to a fixed number of decimal places. * * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used. * * Throws if `decimalPlaces` or `roundingMode` is invalid. * * ```ts * format = { * decimalSeparator: '.', * groupSeparator: ',', * groupSize: 3, * secondaryGroupSize: 0, * fractionGroupSeparator: ' ', * fractionGroupSize: 0 * } * BigNumber.config({ FORMAT: format }) * * x = new BigNumber('123456789.123456789') * x.toFormat() // '123,456,789.123456789' * x.toFormat(1) // '123,456,789.1' * * format.groupSeparator = ' ' * format.fractionGroupSize = 5 * x.toFormat() // '123 456 789.12345 6789' * * BigNumber.config({ * FORMAT: { * decimalSeparator: ',', * groupSeparator: '.', * groupSize: 3, * secondaryGroupSize: 2 * } * }) * * x.toFormat(6) // '12.34.56.789,123' * ``` * * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9. * @param [roundingMode] Rounding mode, integer, 0 to 8. */ toFormat(decimalPlaces?: number, roundingMode?: BigNumber.RoundingMode): string; /** * Returns a string array representing the value of this BigNumber as a simple fraction with an * integer numerator and an integer denominator. The denominator will be a positive non-zero value * less than or equal to `max_denominator`. * * If a maximum denominator, `max_denominator`, is not specified, or is `null` or `undefined`, the * denominator will be the lowest value necessary to represent the number exactly. * * Throws if `max_denominator` is invalid. * * ```ts * x = new BigNumber(1.75) * x.toFraction() // '7, 4' * * pi = new BigNumber('3.14159265358') * pi.toFraction() // '157079632679,50000000000' * pi.toFraction(100000) // '312689, 99532' * pi.toFraction(10000) // '355, 113' * pi.toFraction(100) // '311, 99' * pi.toFraction(10) // '22, 7' * pi.toFraction(1) // '3, 1' * ``` * * @param [max_denominator] The maximum denominator, integer > 0, or Infinity. */ toFraction(max_denominator?: BigNumber.Value): BigNumber[]; /** * As `valueOf`. */ toJSON(): string; /** * Returns the value of this BigNumber as a JavaScript primitive number. * * Using the unary plus operator gives the same result. * * ```ts * x = new BigNumber(456.789) * x.toNumber() // 456.789 * +x // 456.789 * * y = new BigNumber('45987349857634085409857349856430985') * y.toNumber() // 4.598734985763409e+34 * * z = new BigNumber(-0) * 1 / z.toNumber() // -Infinity * 1 / +z // -Infinity * ``` */ toNumber(): number; /** * Returns a string representing the value of this BigNumber rounded to `significantDigits` * significant digits using rounding mode `roundingMode`. * * If `significantDigits` is less than the number of digits necessary to represent the integer * part of the value in normal (fixed-point) notation, then exponential notation is used. * * If `significantDigits` is omitted, or is `null` or `undefined`, then the return value is the * same as `n.toString()`. * * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used. * * Throws if `significantDigits` or `roundingMode` is invalid. * * ```ts * x = 45.6 * y = new BigNumber(x) * x.toPrecision() // '45.6' * y.toPrecision() // '45.6' * x.toPrecision(1) // '5e+1' * y.toPrecision(1) // '5e+1' * y.toPrecision(2, 0) // '4.6e+1' (ROUND_UP) * y.toPrecision(2, 1) // '4.5e+1' (ROUND_DOWN) * x.toPrecision(5) // '45.600' * y.toPrecision(5) // '45.600' * ``` * * @param [significantDigits] Significant digits, integer, 1 to 1e+9. * @param [roundingMode] Rounding mode, integer 0 to 8. */ toPrecision(significantDigits?: number, roundingMode?: BigNumber.RoundingMode): string; /** * Returns a string representing the value of this BigNumber in base `base`, or base 10 if `base` * is omitted or is `null` or `undefined`. * * For bases above 10, and using the default base conversion alphabet (see `ALPHABET`), values * from 10 to 35 are represented by a-z (the same as `Number.prototype.toString`). * * If a base is specified the value is rounded according to the current `DECIMAL_PLACES` and * `ROUNDING_MODE` settings, otherwise it is not. * * If a base is not specified, and this BigNumber has a positive exponent that is equal to or * greater than the positive component of the current `EXPONENTIAL_AT` setting, or a negative * exponent equal to or less than the negative component of the setting, then exponential notation * is returned. * * If `base` is `null` or `undefined` it is ignored. * * Throws if `base` is invalid. * * ```ts * x = new BigNumber(750000) * x.toString() // '750000' * BigNumber.config({ EXPONENTIAL_AT: 5 }) * x.toString() // '7.5e+5' * * y = new BigNumber(362.875) * y.toString(2) // '101101010.111' * y.toString(9) // '442.77777777777777777778' * y.toString(32) // 'ba.s' * * BigNumber.config({ DECIMAL_PLACES: 4 }); * z = new BigNumber('1.23456789') * z.toString() // '1.23456789' * z.toString(10) // '1.2346' * ``` * * @param [base] The base, integer, 2 to 36 (or `ALPHABET.length`, see `ALPHABET`). */ toString(base?: number): string; /** * As `toString`, but does not accept a base argument and includes the minus sign for negative * zero. * * ``ts * x = new BigNumber('-0') * x.toString() // '0' * x.valueOf() // '-0' * y = new BigNumber('1.777e+457') * y.valueOf() // '1.777e+457' * ``` */ valueOf(): string; /** * Returns a new independent BigNumber constructor with configuration as described by `object`, or * with the default configuration if object is `null` or `undefined`. * * Throws if `object` is not an object. * * ```ts * BigNumber.config({ DECIMAL_PLACES: 5 }) * BN = BigNumber.clone({ DECIMAL_PLACES: 9 }) * * x = new BigNumber(1) * y = new BN(1) * * x.div(3) // 0.33333 * y.div(3) // 0.333333333 * * // BN = BigNumber.clone({ DECIMAL_PLACES: 9 }) is equivalent to: * BN = BigNumber.clone() * BN.config({ DECIMAL_PLACES: 9 }) * ``` * * @param [object] The configuration object. */ static clone(object?: BigNumber.Config): BigNumber.Constructor; /** * Configures the settings that apply to this BigNumber constructor. * * The configuration object, `object`, contains any number of the properties shown in the example * below. * * Returns an object with the above properties and their current values. * * Throws if `object` is not an object, or if an invalid value is assigned to one or more of the * properties. * * ```ts * BigNumber.config({ * DECIMAL_PLACES: 40, * ROUNDING_MODE: BigNumber.ROUND_HALF_CEIL, * EXPONENTIAL_AT: [-10, 20], * RANGE: [-500, 500], * CRYPTO: true, * MODULO_MODE: BigNumber.ROUND_FLOOR, * POW_PRECISION: 80, * FORMAT: { * groupSize: 3, * groupSeparator: ' ', * decimalSeparator: ',' * }, * ALPHABET: '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_' * }); * * BigNumber.config().DECIMAL_PLACES // 40 * ``` * * @param object The configuration object. */ static config(object: BigNumber.Config): BigNumber.Config; /** * Returns `true` if `value` is a BigNumber instance, otherwise returns `false`. * * ```ts * x = 42 * y = new BigNumber(x) * * BigNumber.isBigNumber(x) // false * y instanceof BigNumber // true * BigNumber.isBigNumber(y) // true * * BN = BigNumber.clone(); * z = new BN(x) * z instanceof BigNumber // false * BigNumber.isBigNumber(z) // true * ``` * * @param value The value to test. */ static isBigNumber(value: any): boolean; /** * * Returns a BigNumber whose value is the maximum of the arguments. * * Accepts either an argument list or an array of values. * * The return value is always exact and unrounded. * * ```ts * x = new BigNumber('3257869345.0378653') * BigNumber.maximum(4e9, x, '123456789.9') // '4000000000' * * arr = [12, '13', new BigNumber(14)] * BigNumber.maximum(arr) // '14' * ``` * * @param n A numeric value. */ static maximum(...n: BigNumber.Value[]): BigNumber; /** * Returns a BigNumber whose value is the maximum of the arguments. * * Accepts either an argument list or an array of values. * * The return value is always exact and unrounded. * * ```ts * x = new BigNumber('3257869345.0378653') * BigNumber.max(4e9, x, '123456789.9') // '4000000000' * * arr = [12, '13', new BigNumber(14)] * BigNumber.max(arr) // '14' * ``` * * @param n A numeric value. */ static max(...n: BigNumber.Value[]): BigNumber; /** * Returns a BigNumber whose value is the minimum of the arguments. * * Accepts either an argument list or an array of values. * * The return value is always exact and unrounded. * * ```ts * x = new BigNumber('3257869345.0378653') * BigNumber.minimum(4e9, x, '123456789.9') // '123456789.9' * * arr = [2, new BigNumber(-14), '-15.9999', -12] * BigNumber.minimum(arr) // '-15.9999' * ``` * * @param n A numeric value. */ static minimum(...n: BigNumber.Value[]): BigNumber; /** * Returns a BigNumber whose value is the minimum of the arguments. * * Accepts either an argument list or an array of values. * * The return value is always exact and unrounded. * * ```ts * x = new BigNumber('3257869345.0378653') * BigNumber.min(4e9, x, '123456789.9') // '123456789.9' * * arr = [2, new BigNumber(-14), '-15.9999', -12] * BigNumber.min(arr) // '-15.9999' * ``` * * @param n A numeric value. */ static min(...n: BigNumber.Value[]): BigNumber; /** * Returns a new BigNumber with a pseudo-random value equal to or greater than 0 and less than 1. * * The return value will have `decimalPlaces` decimal places, or less if trailing zeros are * produced. If `decimalPlaces` is omitted, the current `DECIMAL_PLACES` setting will be used. * * Depending on the value of this BigNumber constructor's `CRYPTO` setting and the support for the * `crypto` object in the host environment, the random digits of the return value are generated by * either `Math.random` (fastest), `crypto.getRandomValues` (Web Cryptography API in recent * browsers) or `crypto.randomBytes` (Node.js). * * If `CRYPTO` is true, i.e. one of the `crypto` methods is to be used, the value of a returned * BigNumber should be cryptographically secure and statistically indistinguishable from a random * value. * * Throws if `decimalPlaces` is invalid. * * ```ts * BigNumber.config({ DECIMAL_PLACES: 10 }) * BigNumber.random() // '0.4117936847' * BigNumber.random(20) // '0.78193327636914089009' * ``` * * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9. */ static random(decimalPlaces?: number): BigNumber; /** * Configures the settings that apply to this BigNumber constructor. * * The configuration object, `object`, contains any number of the properties shown in the example * below. * * Returns an object with the above properties and their current values. * * Throws if `object` is not an object, or if an invalid value is assigned to one or more of the * properties. * * ```ts * BigNumber.set({ * DECIMAL_PLACES: 40, * ROUNDING_MODE: BigNumber.ROUND_HALF_CEIL, * EXPONENTIAL_AT: [-10, 20], * RANGE: [-500, 500], * CRYPTO: true, * MODULO_MODE: BigNumber.ROUND_FLOOR, * POW_PRECISION: 80, * FORMAT: { * groupSize: 3, * groupSeparator: ' ', * decimalSeparator: ',' * }, * ALPHABET: '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_' * }); * * BigNumber.set().DECIMAL_PLACES // 40 * ``` * * @param object The configuration object. */ static set(object: BigNumber.Config): BigNumber.Config; /** * Helps ES6 import. */ private static readonly default?: BigNumber.Constructor; /** * Helps ES6 import. */ private static readonly BigNumber?: BigNumber.Constructor; /** * Rounds away from zero. */ static readonly ROUND_UP: 0; /** * Rounds towards zero. */ static readonly ROUND_DOWN: 1; /** * Rounds towards Infinity. */ static readonly ROUND_CEIL: 2; /** * Rounds towards -Infinity. */ static readonly ROUND_FLOOR: 3; /** * Rounds towards nearest neighbour. If equidistant, rounds away from zero . */ static readonly ROUND_HALF_UP: 4; /** * Rounds towards nearest neighbour. If equidistant, rounds towards zero. */ static readonly ROUND_HALF_DOWN: 5; /** * Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour. */ static readonly ROUND_HALF_EVEN: 6; /** * Rounds towards nearest neighbour. If equidistant, rounds towards Infinity. */ static readonly ROUND_HALF_CEIL: 7; /** * Rounds towards nearest neighbour. If equidistant, rounds towards -Infinity. */ static readonly ROUND_HALF_FLOOR: 8; /** * See `MODULO_MODE`. */ static readonly EUCLID: 9; /** * To aid in debugging, if a `BigNumber.DEBUG` property is `true` then an error will be thrown * on an invalid `BigNumber.Value`. * * ```ts * // No error, and BigNumber NaN is returned. * new BigNumber('blurgh') // 'NaN' * new BigNumber(9, 2) // 'NaN' * BigNumber.DEBUG = true * new BigNumber('blurgh') // '[BigNumber Error] Not a number' * new BigNumber(9, 2) // '[BigNumber Error] Not a base 2 number' * ``` * * An error will also be thrown if a `BigNumber.Value` is of type number with more than 15 * significant digits, as calling `toString` or `valueOf` on such numbers may not result * in the intended value. * * ```ts * console.log(823456789123456.3) // 823456789123456.2 * // No error, and the returned BigNumber does not have the same value as the number literal. * new BigNumber(823456789123456.3) // '823456789123456.2' * BigNumber.DEBUG = true * new BigNumber(823456789123456.3) * // '[BigNumber Error] Number primitive has more than 15 significant digits' * ``` * */ static DEBUG?: boolean; }