490 lines
15 KiB
Markdown
490 lines
15 KiB
Markdown
|
# Fraction.js - ℚ in JavaSript
|
|||
|
|
|||
|
[![NPM Package](https://img.shields.io/npm/v/fraction.js.svg?style=flat)](https://npmjs.org/package/fraction.js "View this project on npm")
|
|||
|
[![Build Status](https://travis-ci.org/infusion/Fraction.js.svg?branch=master)](https://travis-ci.org/infusion/Fraction.js)
|
|||
|
[![MIT license](http://img.shields.io/badge/license-MIT-brightgreen.svg)](http://opensource.org/licenses/MIT)
|
|||
|
|
|||
|
Tired of inprecise numbers represented by doubles, which have to store rational and irrational numbers like PI or sqrt(2) the same way? Obviously the following problem is preventable:
|
|||
|
|
|||
|
```javascript
|
|||
|
1 / 98 * 98 // = 0.9999999999999999
|
|||
|
```
|
|||
|
|
|||
|
If you need more precision or just want a fraction as a result, have a look at *Fraction.js*:
|
|||
|
|
|||
|
```javascript
|
|||
|
var Fraction = require('fraction.js');
|
|||
|
|
|||
|
Fraction(1).div(98).mul(98) // = 1
|
|||
|
```
|
|||
|
|
|||
|
Internally, numbers are represented as *numerator / denominator*, which adds just a little overhead. However, the library is written with performance in mind and outperforms any other implementation, as you can see [here](http://jsperf.com/convert-a-rational-number-to-a-babylonian-fractions/28). This basic data-type makes it the perfect basis for [Polynomial.js](https://github.com/infusion/Polynomial.js) and [Math.js](https://github.com/josdejong/mathjs).
|
|||
|
|
|||
|
Convert decimal to fraction
|
|||
|
===
|
|||
|
The simplest job for fraction.js is to get a fraction out of a decimal:
|
|||
|
```javascript
|
|||
|
var x = new Fraction(1.88);
|
|||
|
var res = x.toFraction(true); // String "1 22/25"
|
|||
|
```
|
|||
|
|
|||
|
Examples / Motivation
|
|||
|
===
|
|||
|
A simple example might be
|
|||
|
|
|||
|
```javascript
|
|||
|
var f = new Fraction("9.4'31'"); // 9.4313131313131...
|
|||
|
f.mul([-4, 3]).mod("4.'8'"); // 4.88888888888888...
|
|||
|
```
|
|||
|
The result is
|
|||
|
|
|||
|
```javascript
|
|||
|
console.log(f.toFraction()); // -4154 / 1485
|
|||
|
```
|
|||
|
You could of course also access the sign (s), numerator (n) and denominator (d) on your own:
|
|||
|
```javascript
|
|||
|
f.s * f.n / f.d = -1 * 4154 / 1485 = -2.797306...
|
|||
|
```
|
|||
|
|
|||
|
If you would try to calculate it yourself, you would come up with something like:
|
|||
|
|
|||
|
```javascript
|
|||
|
(9.4313131 * (-4 / 3)) % 4.888888 = -2.797308133...
|
|||
|
```
|
|||
|
|
|||
|
Quite okay, but yea - not as accurate as it could be.
|
|||
|
|
|||
|
|
|||
|
Laplace Probability
|
|||
|
===
|
|||
|
Simple example. What's the probability of throwing a 3, and 1 or 4, and 2 or 4 or 6 with a fair dice?
|
|||
|
|
|||
|
P({3}):
|
|||
|
```javascript
|
|||
|
var p = new Fraction([3].length, 6).toString(); // 0.1(6)
|
|||
|
```
|
|||
|
|
|||
|
P({1, 4}):
|
|||
|
```javascript
|
|||
|
var p = new Fraction([1, 4].length, 6).toString(); // 0.(3)
|
|||
|
```
|
|||
|
|
|||
|
P({2, 4, 6}):
|
|||
|
```javascript
|
|||
|
var p = new Fraction([2, 4, 6].length, 6).toString(); // 0.5
|
|||
|
```
|
|||
|
|
|||
|
Convert degrees/minutes/seconds to precise rational representation:
|
|||
|
===
|
|||
|
|
|||
|
57+45/60+17/3600
|
|||
|
```javascript
|
|||
|
var deg = 57; // 57°
|
|||
|
var min = 45; // 45 Minutes
|
|||
|
var sec = 17; // 17 Seconds
|
|||
|
|
|||
|
new Fraction(deg).add(min, 60).add(sec, 3600).toString() // -> 57.7547(2)
|
|||
|
```
|
|||
|
|
|||
|
Rational approximation of irrational numbers
|
|||
|
===
|
|||
|
|
|||
|
Now it's getting messy ;d To approximate a number like *sqrt(5) - 2* with a numerator and denominator, you can reformat the equation as follows: *pow(n / d + 2, 2) = 5*.
|
|||
|
|
|||
|
Then the following algorithm will generate the rational number besides the binary representation.
|
|||
|
|
|||
|
```javascript
|
|||
|
var x = "/", s = "";
|
|||
|
|
|||
|
var a = new Fraction(0),
|
|||
|
b = new Fraction(1);
|
|||
|
for (var n = 0; n <= 10; n++) {
|
|||
|
|
|||
|
var c = new Fraction(a).add(b).div(2);
|
|||
|
|
|||
|
console.log(n + "\t" + a.n + "/" + a.d + "\t" + b.n + "/" + b.d + "\t" + c.n + "/" + c.d + "\t" + x);
|
|||
|
|
|||
|
if (c.add(2).pow(2) < 5) {
|
|||
|
a = c;
|
|||
|
x = "1";
|
|||
|
} else {
|
|||
|
b = c;
|
|||
|
x = "0";
|
|||
|
}
|
|||
|
s+= x;
|
|||
|
}
|
|||
|
console.log(s)
|
|||
|
```
|
|||
|
|
|||
|
The result is
|
|||
|
|
|||
|
```
|
|||
|
n a[n] b[n] c[n] x[n]
|
|||
|
0 0/1 1/1 1/2 /
|
|||
|
1 0/1 1/2 1/4 0
|
|||
|
2 0/1 1/4 1/8 0
|
|||
|
3 1/8 1/4 3/16 1
|
|||
|
4 3/16 1/4 7/32 1
|
|||
|
5 7/32 1/4 15/64 1
|
|||
|
6 15/64 1/4 31/128 1
|
|||
|
7 15/64 31/128 61/256 0
|
|||
|
8 15/64 61/256 121/512 0
|
|||
|
9 15/64 121/512 241/1024 0
|
|||
|
10 241/1024 121/512 483/2048 1
|
|||
|
```
|
|||
|
Thus the approximation after 11 iterations of the bisection method is *483 / 2048* and the binary representation is 0.00111100011 (see [WolframAlpha](http://www.wolframalpha.com/input/?i=sqrt%285%29-2+binary))
|
|||
|
|
|||
|
|
|||
|
I published another example on how to approximate PI with fraction.js on my [blog](http://www.xarg.org/2014/03/precise-calculations-in-javascript/) (Still not the best idea to approximate irrational numbers, but it illustrates the capabilities of Fraction.js perfectly).
|
|||
|
|
|||
|
|
|||
|
Get the exact fractional part of a number
|
|||
|
---
|
|||
|
```javascript
|
|||
|
var f = new Fraction("-6.(3416)");
|
|||
|
console.log("" + f.mod(1).abs()); // Same as: Math.abs(f - parseInt(f, 10));
|
|||
|
```
|
|||
|
|
|||
|
Mathematical correct modulo
|
|||
|
---
|
|||
|
The behaviour on negative congruences is different to most modulo implementations in computer science. Even the *mod()* function of Fraction.js behaves in the typical way. To solve the problem of having the mathematical correct modulo with Fraction.js you could come up with this:
|
|||
|
|
|||
|
```javascript
|
|||
|
var a = -1;
|
|||
|
var b = 10.99;
|
|||
|
|
|||
|
console.log(new Fraction(a)
|
|||
|
.mod(b)); // Not correct, usual Modulo
|
|||
|
|
|||
|
console.log(new Fraction(a)
|
|||
|
.mod(b).add(b).mod(b)); // Correct! Mathematical Modulo
|
|||
|
```
|
|||
|
|
|||
|
fmod() impreciseness circumvented
|
|||
|
---
|
|||
|
It turns out that Fraction.js outperforms almost any fmod() implementation, including JavaScript itself, [php.js](http://phpjs.org/functions/fmod/), C++, Python, Java and even Wolframalpha due to the fact that numbers like 0.05, 0.1, ... are infinite decimal in base 2.
|
|||
|
|
|||
|
The equation *fmod(4.55, 0.05)* gives *0.04999999999999957*, wolframalpha says *1/20*. The correct answer should be **zero**, as 0.05 divides 4.55 without any remainder.
|
|||
|
|
|||
|
|
|||
|
Parser
|
|||
|
===
|
|||
|
|
|||
|
Any function (see below) as well as the constructor of the *Fraction* class parses its input and reduce it to the smallest term.
|
|||
|
|
|||
|
You can pass either Arrays, Objects, Integers, Doubles or Strings.
|
|||
|
|
|||
|
Arrays / Objects
|
|||
|
---
|
|||
|
```javascript
|
|||
|
new Fraction(numerator, denominator);
|
|||
|
new Fraction([numerator, denominator]);
|
|||
|
new Fraction({n: numerator, d: denominator});
|
|||
|
```
|
|||
|
|
|||
|
Integers
|
|||
|
---
|
|||
|
```javascript
|
|||
|
new Fraction(123);
|
|||
|
```
|
|||
|
|
|||
|
Doubles
|
|||
|
---
|
|||
|
```javascript
|
|||
|
new Fraction(55.4);
|
|||
|
```
|
|||
|
|
|||
|
**Note:** If you pass a double as it is, Fraction.js will perform a number analysis based on Farey Sequences. If you concern performance, cache Fraction.js objects and pass arrays/objects.
|
|||
|
|
|||
|
The method is really precise, but too large exact numbers, like 1234567.9991829 will result in a wrong approximation. If you want to keep the number as it is, convert it to a string, as the string parser will not perform any further observations. If you have problems with the approximation, in the file `examples/approx.js` is a different approximation algorithm, which might work better in some more specific use-cases.
|
|||
|
|
|||
|
|
|||
|
Strings
|
|||
|
---
|
|||
|
```javascript
|
|||
|
new Fraction("123.45");
|
|||
|
new Fraction("123/45"); // A rational number represented as two decimals, separated by a slash
|
|||
|
new Fraction("123:45"); // A rational number represented as two decimals, separated by a colon
|
|||
|
new Fraction("4 123/45"); // A rational number represented as a whole number and a fraction
|
|||
|
new Fraction("123.'456'"); // Note the quotes, see below!
|
|||
|
new Fraction("123.(456)"); // Note the brackets, see below!
|
|||
|
new Fraction("123.45'6'"); // Note the quotes, see below!
|
|||
|
new Fraction("123.45(6)"); // Note the brackets, see below!
|
|||
|
```
|
|||
|
|
|||
|
Two arguments
|
|||
|
---
|
|||
|
```javascript
|
|||
|
new Fraction(3, 2); // 3/2 = 1.5
|
|||
|
```
|
|||
|
|
|||
|
Repeating decimal places
|
|||
|
---
|
|||
|
*Fraction.js* can easily handle repeating decimal places. For example *1/3* is *0.3333...*. There is only one repeating digit. As you can see in the examples above, you can pass a number like *1/3* as "0.'3'" or "0.(3)", which are synonym. There are no tests to parse something like 0.166666666 to 1/6! If you really want to handle this number, wrap around brackets on your own with the function below for example: 0.1(66666666)
|
|||
|
|
|||
|
Assume you want to divide 123.32 / 33.6(567). [WolframAlpha](http://www.wolframalpha.com/input/?i=123.32+%2F+%2812453%2F370%29) states that you'll get a period of 1776 digits. *Fraction.js* comes to the same result. Give it a try:
|
|||
|
|
|||
|
```javascript
|
|||
|
var f = new Fraction("123.32");
|
|||
|
console.log("Bam: " + f.div("33.6(567)"));
|
|||
|
```
|
|||
|
|
|||
|
To automatically make a number like "0.123123123" to something more Fraction.js friendly like "0.(123)", I hacked this little brute force algorithm in a 10 minutes. Improvements are welcome...
|
|||
|
|
|||
|
```javascript
|
|||
|
function formatDecimal(str) {
|
|||
|
|
|||
|
var comma, pre, offset, pad, times, repeat;
|
|||
|
|
|||
|
if (-1 === (comma = str.indexOf(".")))
|
|||
|
return str;
|
|||
|
|
|||
|
pre = str.substr(0, comma + 1);
|
|||
|
str = str.substr(comma + 1);
|
|||
|
|
|||
|
for (var i = 0; i < str.length; i++) {
|
|||
|
|
|||
|
offset = str.substr(0, i);
|
|||
|
|
|||
|
for (var j = 0; j < 5; j++) {
|
|||
|
|
|||
|
pad = str.substr(i, j + 1);
|
|||
|
|
|||
|
times = Math.ceil((str.length - offset.length) / pad.length);
|
|||
|
|
|||
|
repeat = new Array(times + 1).join(pad); // Silly String.repeat hack
|
|||
|
|
|||
|
if (0 === (offset + repeat).indexOf(str)) {
|
|||
|
return pre + offset + "(" + pad + ")";
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
return null;
|
|||
|
}
|
|||
|
|
|||
|
var f, x = formatDecimal("13.0123123123"); // = 13.0(123)
|
|||
|
if (x !== null) {
|
|||
|
f = new Fraction(x);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
Attributes
|
|||
|
===
|
|||
|
|
|||
|
The Fraction object allows direct access to the numerator, denominator and sign attributes. It is ensured that only the sign-attribute holds sign information so that a sign comparision is only necessary against this attribute.
|
|||
|
|
|||
|
```javascript
|
|||
|
var f = new Fraction('-1/2');
|
|||
|
console.log(f.n); // Numerator: 1
|
|||
|
console.log(f.d); // Denominator: 2
|
|||
|
console.log(f.s); // Sign: -1
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
Functions
|
|||
|
===
|
|||
|
|
|||
|
Fraction abs()
|
|||
|
---
|
|||
|
Returns the actual number without any sign information
|
|||
|
|
|||
|
Fraction neg()
|
|||
|
---
|
|||
|
Returns the actual number with flipped sign in order to get the additive inverse
|
|||
|
|
|||
|
Fraction add(n)
|
|||
|
---
|
|||
|
Returns the sum of the actual number and the parameter n
|
|||
|
|
|||
|
Fraction sub(n)
|
|||
|
---
|
|||
|
Returns the difference of the actual number and the parameter n
|
|||
|
|
|||
|
Fraction mul(n)
|
|||
|
---
|
|||
|
Returns the product of the actual number and the parameter n
|
|||
|
|
|||
|
Fraction div(n)
|
|||
|
---
|
|||
|
Returns the quotient of the actual number and the parameter n
|
|||
|
|
|||
|
Fraction pow(exp)
|
|||
|
---
|
|||
|
Returns the power of the actual number, raised to an integer exponent.
|
|||
|
*Note:* Rational exponents are planned, but would slow down the function a lot, because of a kinda slow root finding algorithm, whether the result will become irrational. So for now, only integer exponents are implemented.
|
|||
|
|
|||
|
Fraction mod(n)
|
|||
|
---
|
|||
|
Returns the modulus (rest of the division) of the actual object and n (this % n). It's a much more precise [fmod()](#fmod-impreciseness-circumvented) if you will. Please note that *mod()* is just like the modulo operator of most programming languages. If you want a mathematical correct modulo, see [here](#mathematical-correct-modulo).
|
|||
|
|
|||
|
Fraction mod()
|
|||
|
---
|
|||
|
Returns the modulus (rest of the division) of the actual object (numerator mod denominator)
|
|||
|
|
|||
|
Fraction gcd(n)
|
|||
|
---
|
|||
|
Returns the fractional greatest common divisor
|
|||
|
|
|||
|
Fraction lcm(n)
|
|||
|
---
|
|||
|
Returns the fractional least common multiple
|
|||
|
|
|||
|
Fraction ceil([places=0])
|
|||
|
---
|
|||
|
Returns the ceiling of a rational number (rounded up)
|
|||
|
|
|||
|
Fraction floor([places=0])
|
|||
|
---
|
|||
|
Returns the floor of a rational number (rounded down)
|
|||
|
|
|||
|
Fraction round([places=0])
|
|||
|
---
|
|||
|
Returns the rational number rounded (normal round)
|
|||
|
|
|||
|
Fraction inverse()
|
|||
|
---
|
|||
|
Returns the multiplicative inverse of the actual number (n / d becomes d / n) in order to get the reciprocal
|
|||
|
|
|||
|
boolean equals(n)
|
|||
|
---
|
|||
|
Check if two numbers are equal
|
|||
|
|
|||
|
boolean compare(n)
|
|||
|
---
|
|||
|
Compare two numbers.
|
|||
|
```
|
|||
|
result < 0: n is greater than actual number
|
|||
|
result > 0: n is smaller than actual number
|
|||
|
result = 0: n is equal to the actual number
|
|||
|
```
|
|||
|
|
|||
|
boolean divisible(n)
|
|||
|
---
|
|||
|
Check if two numbers are divisible (n divides this)
|
|||
|
|
|||
|
double valueOf()
|
|||
|
---
|
|||
|
Returns a decimal representation of the fraction
|
|||
|
|
|||
|
String toString()
|
|||
|
---
|
|||
|
Generates an exact string representation of the actual object, including repeating decimal places of any length.
|
|||
|
|
|||
|
**Note:** As `valueOf()` and `toString()` are provided, `toString()` is only called implicitly in a real string context. Using the plus-operator like `"123" + new Fraction` will call valueOf(), because JavaScript tries to combine two primitives first and concatenates them later, as string will be the more dominant type. `alert(new Fraction)` or `String(new Fraction)` on the other hand will do what you expect. If you really want to have control, you should call `toString()` or `valueOf()` explicitly!
|
|||
|
|
|||
|
String toLatex(excludeWhole=false)
|
|||
|
---
|
|||
|
Generates an exact LaTeX representation of the actual object. You can see a [live demo](http://www.xarg.org/2014/03/precise-calculations-in-javascript/) on my blog.
|
|||
|
|
|||
|
The optional boolean parameter indicates if you want to exclude the whole part. "1 1/3" instead of "4/3"
|
|||
|
|
|||
|
String toFraction(excludeWhole=false)
|
|||
|
---
|
|||
|
Gets a string representation of the fraction
|
|||
|
|
|||
|
The optional boolean parameter indicates if you want to exclude the whole part. "1 1/3" instead of "4/3"
|
|||
|
|
|||
|
Array toContinued()
|
|||
|
---
|
|||
|
Gets an array of the fraction represented as a continued fraction. The first element always contains the whole part.
|
|||
|
|
|||
|
```javascript
|
|||
|
var f = new Fraction('88/33');
|
|||
|
var c = f.toContinued(); // [2, 1, 2]
|
|||
|
```
|
|||
|
|
|||
|
Fraction clone()
|
|||
|
---
|
|||
|
Creates a copy of the actual Fraction object
|
|||
|
|
|||
|
Options
|
|||
|
===
|
|||
|
|
|||
|
The library should work without configuring anything. However, there is one global option:
|
|||
|
|
|||
|
```javascript
|
|||
|
Fraction.REDUCE = <true|false>
|
|||
|
```
|
|||
|
|
|||
|
It tells Fraction.js whether to reduce the fraction or not.
|
|||
|
|
|||
|
```javascript
|
|||
|
// Normal behavior
|
|||
|
var f = Fraction(3, 6);
|
|||
|
console.log(f); // 1/2
|
|||
|
|
|||
|
// Disable fraction reduction
|
|||
|
Fraction.REDUCE = false;
|
|||
|
var g = Fraction(3, 6);
|
|||
|
console.log(g); // 3/6
|
|||
|
|
|||
|
// Back to normal behavior
|
|||
|
Fraction.REDUCE = true;
|
|||
|
var h = Fraction(g);
|
|||
|
console.log(h); // 1/2
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
Exceptions
|
|||
|
===
|
|||
|
If a really hard error occurs (parsing error, division by zero), *fraction.js* throws exceptions! Please make sure you handle them correctly.
|
|||
|
|
|||
|
|
|||
|
|
|||
|
Installation
|
|||
|
===
|
|||
|
Installing fraction.js is as easy as cloning this repo or use one of the following commands:
|
|||
|
|
|||
|
```
|
|||
|
bower install fraction.js
|
|||
|
```
|
|||
|
or
|
|||
|
|
|||
|
```
|
|||
|
npm install --save fraction.js
|
|||
|
```
|
|||
|
|
|||
|
Using Fraction.js with the browser
|
|||
|
===
|
|||
|
```html
|
|||
|
<script src="fraction.js"></script>
|
|||
|
<script>
|
|||
|
console.log(Fraction("123/456"));
|
|||
|
</script>
|
|||
|
```
|
|||
|
|
|||
|
Using Fraction.js with require.js
|
|||
|
===
|
|||
|
```html
|
|||
|
<script src="require.js"></script>
|
|||
|
<script>
|
|||
|
requirejs(['fraction.js'],
|
|||
|
function(Fraction) {
|
|||
|
console.log(Fraction("123/456"));
|
|||
|
});
|
|||
|
</script>
|
|||
|
```
|
|||
|
|
|||
|
Coding Style
|
|||
|
===
|
|||
|
As every library I publish, fraction.js is also built to be as small as possible after compressing it with Google Closure Compiler in advanced mode. Thus the coding style orientates a little on maxing-out the compression rate. Please make sure you keep this style if you plan to extend the library.
|
|||
|
|
|||
|
|
|||
|
Precision
|
|||
|
===
|
|||
|
Fraction.js tries to circumvent floating point errors, by having an internal representation of numerator and denominator. As it relies on JavaScript, there is also a limit. The biggest number representable is `|Number.MAX_SAFE_INTEGER / 1|` and the smallest is `|1 / Number.MAX_SAFE_INTEGER|`, with `Number.MAX_SAFE_INTEGER=9007199254740991`.
|
|||
|
|
|||
|
Testing
|
|||
|
===
|
|||
|
If you plan to enhance the library, make sure you add test cases and all the previous tests are passing. You can test the library with
|
|||
|
|
|||
|
```
|
|||
|
npm test
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
Copyright and licensing
|
|||
|
===
|
|||
|
Copyright (c) 2015, Robert Eisele (robert@xarg.org)
|
|||
|
Dual licensed under the MIT or GPL Version 2 licenses.
|